Some Tips on Solving Cryptarithms

Cryptarithms can be easy and fun. You don't need to know any advanced mathematics. Straightforward logic and simple arithmetic are all you need. Here are a few tips to get you started.

0 [zero] and 9 are often easily and directly identifiable.

PUZZL e	If a number in the	EXAMPL E	Likewise, if a number in the
-decod e	rightmost column is	-PROBLE M	rightmost column is subtracted
HELPE R	subtracted from itself,	OPERAT E	from another number, leaving
	the result must equal		the latter number unchanged,
	zero; in this example, R=0		the number being subtracted
			must equal zero; in this
			example, M=0

When a number in a non-rightmost column is subtracted from itself, the result can only be 0 [zero] or 9 (it will be 9 if the column to the right "borrowed 1").

SIMPLES must equal 9.S cannot be 0 because it appears at the start of-NUMBERSIMPLE and numbers in cryptarithms never have leading zeroes. ItENSUESwould also be forced to be 9 in a situation where the value of 0had already been assigned to another letter.

Consider the case of a digit A, which when multiplied by four different non-zero digits B, C, D, and E yields products ending in B, C, D, and E respectively. A must equal 1. (6 exhibits a similar pattern, but in a smaller number of cases; e.g. 6*2 = 12, 6*4 = 24, 6*8 = 48.)