Some Tips on Solving Cryptarithms

Cryptarithms can be easy and fun. You don't need to know any advanced mathematics. Straightforward logic and simple arithmetic are all you need. Here are a few tips to get you started.

0 [zero] and 9 are often easily and directly identifiable.

$\begin{array}{r} \text { PUZZLE } \\ - \text { DECODE } \\ \hline \end{array}$	If a number in the rightmost column is	$\begin{array}{r} \text { EXAMPLE } \\ \text { - PROBLEM } \\ \hline \end{array}$	Likewise, if a number in the rightmost column is subtracted
HELPER	```subtracted from itself, the result must equal zero; in this example, R=0```	OPERATE	from another number, leaving the latter number unchanged, the number being subtracted must equal zero; in this example, $\mathrm{M}=0$

When a number in a non-rightmost column is subtracted from itself, the result can only be 0 [zero] or 9 (it will be 9 if the column to the right "borrowed 1").
SIMPLE S must equal 9. S cannot be 0 because it appears at the start of -NUMBER SIMPLE and numbers in cryptarithms never have leading zeroes. It ENSUES would also be forced to be 9 in a situation where the value of 0 had already been assigned to another letter.

Consider the case of a digit A, which when multiplied by four different non-zero digits B, C, D, and E yields products ending in B, C, D, and E respectively.
A must equal 1. (6 exhibits a similar pattern, but in a smaller number of cases; e.g. $6 * 2=12,6 * 4=24,6 * 8=48$.

